
Paper Review 《Detecting Incorrect Build
Rules》

Paper Info

Nandor Licker, Andrew Rice

ICSE 2019

Main Contribution

This paper is aimed at the detection of incorrect build rules. The aim and the approach of this work are both
similar to Vemake. The core insight of this work is build fuzzing, which refines the dependency graph which
is constructed based on IO information. Mining in the dependency graphs can help them find race
conditions. Another shining point of this work is the unbelievably large scale of experiments. They perform
the experiments on 500 open-source projects, classify the results by their types and obtain the common
patterns of incorrect build rules. They also discuss the causes of this incorrect build rules and whether it is
necessary to fix these incorrect rules or not.

Main Work

The work consists of three parts:

Dependency graph construction: Similar to Vemake, the tool in this paper also makes use of strace
to monitor the system calls and obtains the file dependency relations. Based on this information, the
authors propose algorithm 1 to construct the dependency graph. However, the dependency graph
might be over-constraining and under-constraining, hence it needs refinements, which is achieved by
build fuzzing in algorithm 2.
Dependency graph refinement based on build fuzzing: They change the content of each file(add some
blank lines at the end of the file). This can trigger the incremental build. According to the dependency
graph returned in algorithm 1, the expected changed files can be obtained. Compared the expected
changed files with actual changed files, it is easy to get the missing edges and duplicated edges in the
dependency graph. The dependency graph can be refined in this way.
Race condition detection: Based on the original dependency graph returned in algorithm 1 and the
refined dependency graph returned in algorithm 2, it is easy to find race condition just by comparing
the file dependencies of each file in two graphs. If they are not equal, race condition exists.

In the evaluation part, they describe the experimental settings and perform a large range of experiments on
500 open-source projects. They classify the causes of incorrect build rules and discuss the necessity of fixing
them.

Some Criticisms

af://n0
af://n2
af://n5
af://n7
af://n17

Although this work is rewarded as the distinguished paper in ICSE 2019, the approach is limited in several
aspects. For example, it can not detect all the missing dependencies and race conditions. Only some of
them can be found in their approach.

They claim that it involves substantial engineering effort if they parse build definitions by creating custom
parsers, but it might be the only way to extract the precise expected dependency relations. In theory, we can
find all of the reports of a specific dependency issue.

Moreover, build fuzzing is time-consuming. They change the content of each file and try to trigger the
incremental build. Almost all the files need to be tested one by one, so this process is quite time-consuming.
However, Vemake only builds several times, and the number of builds is determined by the number of top
targets.

	Paper Review 《Detecting Incorrect Build Rules》
	Paper Info
	Main Contribution
	Main Work
	Some Criticisms

